Turbochargers: Taking Power Up High

Adding only about 15 percent to operating costs, turbos dramatically increase an airplane's utility. Common sense helps them last.

7

Full disclosure—we have a bias when it comes to turbosuperchargers. We like them. A lot. After flying them for more than 45 years and using them to get to altitudes that allowed a safe flight when we could not have even launched in a normally aspirated machine, we think that they are well worth the cost of care and feeding. That’s above and beyond the comfort they have given us during mountain operations and high and hot takeoffs. Apparently, our opinion is consistent with the historical market as turbocharged singles and twins have outsold their normally aspirated kin. 

Background

We call them by several names—turbo and turbocharger are shorthand for a turbosupercharger, which is a supercharger spun by a turbine in the exhaust system.  

They’ve been around in aviation for over 100 years; in 1920 an Army test pilot climbed to over 33,000 feet in a LePere biplane powered by a Liberty engine equipped with a General Electric turbocharger. Cessna is credited with successfully bringing turbocharging to general aviation in the Model 320 in 1962. 

Hartzell is currently the sole supplier of turbos in the U.S. Feedback from the field has been that Hartzell has cleaned up the quality control issues that it inherited when it took over Kelly Aerospace, which had acquired the Garrett and Rajay lines of turbos. 

The Basics

A turbocharger is an air pump that sends compressed air to the engine intake system. Half of it is a turbine that lives in the hellish environment of the exhaust system—its wheel is spun by those fiery gases. When fully engaged it can spin at over 100,000 RPM and glows brightly enough for a person to read a book. 

The turbine wheel shaft extends through the center housing into the cold side, where it spins the pump that compresses the ambient intake air and jams it into the induction system, allowing more power to be developed. 

Two Versions

There are two distinct underlying designs of turbo system. In one, the engine develops sea level manifold pressure up to a selected altitude—it’s referred to as a turbonormalized engine. In the other, a boosted or “blown” engine, the engine can develop greater than ambient manifold pressure up to an altitude at which the system can’t compress the ambient air enough and manifold pressure starts to drop, the engine’s critical altitude. 

A wastegate—the butterfly valve in the exhaust pipe upstream of the turbo—routes air either down the remainder of the tailpipe or diverts it into the turbo, or some mixture of the two. When closed, it all goes into the turbo. 

Some wastegates are fixed—the pilot controls power with the throttle—and some are manual—there is a second control in addition to the throttle that the pilot must use in setting power. However, most are automatic—a controller senses the pressure of the air in the upper deck of the induction system, just upstream of the throttle body, and uses engine oil pressure to set the position of the valve in the waste-gate to maintain the manifold pressure the pilot has commanded with the throttle. Properly adjusted, an automatic system requires no action by the pilot during a climb or descent—which is not the case with a fixed or a manual wastegate.

When you discover that your system can’t make the promised manifold pressure at altitude, it doesn’t mean it’s time for an overhaul. According to Scott Utz, director of maintenance at Arapahoe Aero on Denver’s Centennial Airport, turbos hold up quite well—most of the time the problem will be something other than the turbo. See the sidebar “Care And Feeding And Figuring Out What’s Wrong” below.

Preventive Maintenance

The induction system has been disconnected from the compressor side of this turbo for visual inspection. The oil supply routes into the center between the compressor and turbine. On this installation, a heat shield surrounds the turbine.

Utz pointed out that routine, preventive maintenance that keeps the engine happy is good for the turbo system as well. Keeping the air filter clean is good in general—on a turbo something as basic as a dirty filter means less air into the compressor, resulting in lower manifold pressure at altitude. 

Even with the impressive metallurgy and high-temp alloys used in their manufacture, the environment in which wastegates live mean that they sometimes fail. 

Otherwise, turbos do wear out and lubrication lines get plugged with coked oil—the result of the heat and speed at which the wheels are turning. That usually means it’s overhaul time.

Expected Life

We heard from owners and shops and spoke with Gary Main, proprietor of Main Turbo (www.mainturbo.com), a turbocharger overhaul shop, regarding expected life of turbos in service. From owners and shops we got a 50-50 split. Half said their turbos made it to TBO before needing overhaul, the others said they usually made it about halfway. 

Gary Main told us he was not surprised by the split. He said that the big turbos in the T210 and big twins are “strong and robust” and regularly make it to TBO. Where big power is demanded from the smaller ones, such as in a Cirrus, Piper Malibu or Aerostar, they don’t hold up as well. If the airplane is used for training or large, fast power changes are the rule, the turbo is more likely to expire prior to TBO.

Depending on the model of the turbocharger, overhaul costs start at $2500 for a T210 and go up—figure on at least $3700 for each one on a twin Cessna. It gets very ugly for the Aerostar as $4500 is the starting point and there are two per engine.  

Nevertheless, historically the cost of operating a turbocharged airplane has run only about 15 percent more than its normally aspirated cousin—inexpensive, in our opinion, for the added capability. We saw nothing to change that number.

Proper Operation

The bad news is that there are a couple of misconceptions about turbo system operations among pilots, and they may be reducing turbocharger life. 

First, a lot of pilots assume that the turbo is not spinning during low-power operation, such as on landing or during taxi. That is absolutely incorrect—there is always some exhaust gas going to the turbo, so it’s turning. 

Second, a surprising number of pilots did not know their airplane had limits on allowable manifold pressure above a certain altitude. Most know about critical altitude—the highest altitude at which the turbo will allow the engine to produce rated manifold pressure. However, at some point above critical altitude, the pilot must comply with a table that shows the maximum allowable manifold pressure and reduce power accordingly. 

For example, a Cessna 414A has published maximum manifold pressures for all altitudes above 20,000 feet. That’s because the turbine blades are spinning so fast and get so hot that they stretch—it’s called blade creep—and, if the maximum manifold pressure for the altitude is exceeded, there’s a high risk they will rub against the housing, causing rapid erosion. Ignore it and get welcomed to an early overhaul.

Overshoot

To get an idea of the harsh environment and tight quarters in which many turbochargers live, this is looking straight down on the turbo and tailpipe on the right side of the front engine of a Cessna P337 Pressurized Skymaster. The airplane is used in a Part 135 operation and the company president reports that he’s never had to overhaul a turbo prior to engine overhaul.

Because oil pressure controls the wastegate on an automatic system, it’s not unusual for the manifold pressure to overshoot—exceed redline—on the first takeoff of the day if the oil is still cold. The system is just sluggish. There is a popoff valve that should open to stop the manifold pressure from exceeding more than a few inches above redline and damaging the engine. It’s not a good idea to rely on the popoff valve—monitor manifold pressure on takeoff and stop it at redline. 

With a fixed or manual wastegate, the pilot has to set power—and because it takes a few moments for the turbo to spin up from its relatively low RPM during taxi and runup, the manifold pressure will lag behind throttle movement. Experienced pilots learn to stop throttle movement at some point below the target manifold pressure. Overshoot increases with takeoff elevation—we’ve seen it exceed 15 inches of manifold pressure on a takeoff from Leadville, Colorado, in a Turbo Arrow. 

Cruise

In cruise, back off a bit from a power setting that generates maximum Turbine Inlet Temperature (TIT). Turbo overhaulers and mechanics told us to back off at least 20 degrees to extend the life of the system, be it lean or rich of peak. 

Make all power changes gradually. After landing give the turbo time to spool down.  

At shutdown, the oil flow to the turbo ends and a hot turbo will coke the oil in the unit. That can eventually plug oil galleys and cause turbo failure.  

Many POHs call for a five-minute idle spooldown time after reaching parking. However, research performed on a Cessna Skymaster and more recently by GAMI produced the not surprising information that the turbo is the coolest it is going to get just after touchdown—unless there’s been a high-power approach and chopped throttle. 

The turbo heats up during taxi in. The conclusions were that unless you approach at high power, chop the throttle and taxi a short distance—by the time you reach parking, the turbo has spooled down to an RPM suitable for shutdown. 

Conclusion

After nearly 60 years in regular use in general aviation airplanes, we believe turbochargers have proven their worth and reliability for pilots who want to use their airplanes for more than just recreation.  

They don’t require any extraordinary care beyond what you would do to properly operate the engine. However, when there is a problem, failing to carefully troubleshoot it can send costs skyrocketing if a mechanic just starts replacing parts. 


Care And Feeding And Figuring Out What’s Wrong

In researching this article we got feedback from owners of turbocharged airplanes who reported that they had to overhaul the turbos at about 1000 hours of operation and an equal number who said that their turbos ran fine all the way to when they overhauled the engine. We came away with the opinion that an owner who follows good engine operating procedures generally—no rapid power changes, allowing the engine oil to warm up prior to takeoff and changing the oil on a schedule that reflects hours of operation as well as calendar time—can reasonably expect the turbo to make it to engine TBO.

In speaking with various shops and with Mike Busch, whose Savvy Aviation provides maintenance management to several hundred general aviation aircraft owners, we learned that when there is a problem with a turbo system it’s important to carefully troubleshoot the matter rather than blindly replacing components in hopes of fixing things. In general, there are five things that can go wrong with a turbo system: problems with the turbocharger, controller or wastegate, or leaks in the induction or exhaust systems. Most manifest initially with a loss of manifold pressure at altitude or premature bootstrapping (loss of manifold pressure control because the wastegate is closed). The underlying problems tend to have subtly different symptoms, so it’s important to carefully analyze what’s going on.

While there may be an underlying problem with the engine itself, such as a cylinder or ignition issue, most of those can be diagnosed with a good engine monitor—and we wouldn’t own a turbocharged airplane without a good engine monitor installed.

When you notice a problem, document the details as precisely as you can—power setting, manifold pressure behavior, airspeed, altitude and outside air temperature at the least.

If the problem is a sudden, dramatic loss of manifold pressure, assume worst case—that it’s due to an exhaust system leak, that hot exhaust gases are now spraying around inside the cowling and there is a very real and serious fire risk. Assuming anything else puts you and your passengers in danger. Reduce power immediately and land as soon as practical. If you’re flying a twin and can do so, shut down and secure the engine. Fires due to exhaust system failures have killed too many people. They are why there are a number of ADs calling for regular, careful inspection and maintenance of the exhaust systems of turbocharged engines.

We’re serious about this—while the ADs and awareness among A&Ps about the need for careful exhaust system maintenance have reduced the number of fires dramatically, the risk has not gone away.

After the flight it’s time for consultation with your A&P. If the cause was not an exhaust system failure, do a critical altitude check. That involves seeing if the engine will develop the manifold pressures at altitudes called out in the Airplane Service Manual. If it doesn’t make power and starts bootstrapping at a lower than expected altitude, the problem is most likely an induction system leak.

Induction system leaks may also manifest by higher than normal manifold pressure when idling on the ground. A leak may be spotted during a visual inspection or it may be necessary to pressurize the system with shop air, spray it with soapy water and look for bubbles.

Assuming that the exhaust system has truly been inspected every 50 hours, a leak is less likely than an induction system leak. Exhaust leaks are also easier to find on visual inspection as they leave stains.

Wastegates can get sticky due to lead, carbon, sulfur or coked oil accumulations. If manifold pressure seems to vary randomly, the wastegate may be going. Removing it and applying a source of adjustable air pressure can detect if it is closing smoothly as 50 PSI is approached. If not, it’s probably time for an overhaul.

We’re advised that controller problems are rare. On a twin, swap controllers and see if the problem moves. Otherwise, the poppet valve may have sludge that can be blown out with shop air in the oil return port. Make sure the upper deck reference line has no liquid in it. If it does, purge it and clean the controller’s aneroid chamber—that’s not as difficult as it sounds.

The turbo itself can go south—fortunately, that’s not high on the probability list. If that is the problem, it’s usually obvious. FOD, such as on the turbo pictured below, is easy to spot. Blades rubbing on the housing on the hot side can be observed when the exhaust pipe is pulled. A worn-out center section usually presents through oil leaking into the compressor and processing through the induction system and engine or into the turbine—resulting in oily deposits in the tailpipe and on the belly. However, oil in the turbo may be due to a bad check valve in the supply or return lines. Inspect them first as the turbo may be fine.


This article originally appeared in the May 2021 issue of Aviation Consumer magazine.

For more great content like this, subscribe to Aviation Consumer!

Other AVwebflash Articles

7 COMMENTS

  1. One area commonly ignored is the slip joint in the exhaust tubing that feeds the turbochargers. Non-turbo airplanes don’t need them because their pipes are fixed on only one end – at the cylinder head exhaust port – and when they get hot and expand there is no issue.

    On turbocharged airplanes the exhaust pipes are fixed on both ends – at the cylinder head and at the turbo, so when they go from 10°F to cherry red hot, they need some means of absorbing the expansion, and that is the slip joint.

    In the process of refurb-ing my new-to-me 1973 Aztec, I discovered a ten-inch crack in a section of exhaust tubing which had been spraying red-hot gas onto the underside of the engine. Interestingly, the avionics shop which installed my new engine monitor missed it and dutifully installed an EGT sending unit about three inches away in the exhaust tubing. (They also wired the EGT and CHT to the wrong engines, but that’s another VERY expensive story.) When we tried to get the slip joints apart, it required heating one side cherry red and dipping the other in liquid nitrogen to separate them, with a lot of grunting and swearing still required. I don’t think they’d ever been apart and lubricated in 1500 hours run time.

    Once separated, the joints can be lubricated with metal-based hi-temp lube. The nickel-based lube will handle higher temperatures than the copper-based.

  2. The article mentions coking in the oil. With proper attention to detail this is not likely, yet it is the number one point of turbo failure.

    I have operated turbo boosted engines in on and off highway and marine applications for over 30 years. Typically they boost up to 3 atmospheres (45 psi). Diesel exhaust is much cooler than gasoline engine exhaust so turbos run much cooler on diesels. In highway operation a properly operated turbo is the key to its longevity. Most can last over a million miles which translates to approximately 20,000 hours.

    Since gasoline exhaust is much hotter, it is imperative that the turbo is cooled down before shut down to prevent coking. While the oil is flowing there is no coking. Even a long taxi is enough to heat up a turbo to the point of coking, if the engine is immediately shut down. Always idle the engine for at least 5 or 10 minutes before shut down to allow the turbo to cool.

    In 30 years I have seen few turbo failures. All have been caused by failure to cool properly or boosting too soon on a cold engine. Just as a hot start will destroy a jet engine, a hot start will destroy a turbocharger.

  3. Many POHs call for a five-minute idle spooldown time after reaching parking. However, research performed on a Cessna Skymaster and more recently by GAMI produced the not surprising information that the turbo is the coolest it is going to get just after touchdown—unless there’s been a high-power approach and chopped throttle.

    The turbo may be as cool as it’s going to get but the oil gets a chance to cool down during the 5-10 minute idle period.

  4. I think some clarification is in order. The “5 minute spooldown” period should be “5 minute cooldown”. This period is to allow the heat of the turbine wheel to soak back into the shaft and be carried away by the oil, It has nothing to do with waiting for the turbo to slow down. The turbocharger RPM drops to idle within seconds after closing the throttle.

    Further to Robert B’s comment:
    “Just as a hot start will destroy a jet engine, a hot start will destroy a turbocharger.”
    I think he meant to say:
    Just as a hot start will destroy a jet engine, a hot STOP will destroy a turbocharger.

  5. Young kids today will argue that a “turbo”, as they call it and know, is not a supercharger. They will argue this to the cows come home. The shortening of the full name has been in use for so long they have lost the ability to know what it really is.

    • Like it or not, the English language is a living thing, in which usage defines meaning – not the other way around. And in the automotive world – which is one hell of a lot larger that the aviation world – the term supercharger invariably refers to a mechanically driven air compressor, not to a turbo.

      Hence, the young whippersnappers may have been wrong 50 or so years ago, but they are correct today.

  6. It would be nice to have an explanation of the functioning and pros and cons of different types of controllers (absolute pressure, variable absolute pressure, slope).

    Overboost is mentioned. It would also be helpful to discuss overfueling, particular on first flight on a coldish day. I have seen the fuel flow needle in the MP section of the gauge on a T210. Some installations have a fuel pressure limiter to prevent this. Difficult to address due to the disadvantages of a full power runup or leaning the mixture while charging down the runway.

    Finally a discussion on errors and tolerances on power and fuel flow and the indications thereof. I have seen airplanes that seem to perform better than book, but they use more fuel too.

LEAVE A REPLY